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Moore’s law in modern CPU

Moore’s law: Number of transistors on chips doubles every 2 years

Now: CPU frequency stagnate, number of cores increases
⇒ parallelism is needed to take advantage of multi-core systems
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Classical paradigms of parallel programming

Several paradigms of parallel programming already exist:

Task parallelism Data parallelism

E.g.: multitasking

Limit: needs independent tasks

E.g.: array/matrix processing

Limit: needs independent data
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Task and data dependencies: video edition example

Some modern applications require complex computation but cannot
use task or data parallelism due to dependencies.
⇒ eg. audio and video processing

Example of video edition:
1 decode a frame into a bitmap image
2 rotate the image
3 trim the image

dependencies

“task”: transformations depend on result of previous
transformations in the chain
“data”: frame decoding depends on previously decoded frames
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Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
Split frame processing in 3 sub-tasks:

1 decoding
2 rotation
3 trimming

Perform each sub-task on different cores
Make images flow from one sub-task to another
⇒ Sub-tasks performed in parallel for different images
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Pipeline parallelism: general case

General principle

Divide a sequential code in several sub-tasks
Execute each sub-task on different cores
Make data flow from one sub-task to another
⇒ Sub-tasks run in parallel on different parts of the flow
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Efficiency of pipeline parallelism
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Efficiency of pipeline parallelism

Performance improvement with 6 cores instead of 3:
Latency: slower by 3 Tcomm

Throughput: about 2 times faster
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Efficiency of pipeline parallelism

In the general case, performance for n cores is:
Latency: Ttask + (n − 1)Tcomm

Throughput: 1 output every Tsubtask + Tcomm
⇒ 1 output every Ttask

n + Tcomm

Problem
Communication time limits the speedup

7 / 40



Pipeline parallelism: limits

On n cores, one processing done every Ttask
n + Tcomm

Communication time limits the speedup !
⇒ Need for efficient inter-core communication
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Problem statement

Problem 1
Current communication algorithms perform badly for inter-core
communication

Problem 2
Changing the communication algorithm of all/many programs doing
pipeline parallelism is impractical

Contributions
Two-fold solution:

BatchQueue: queue optimized for inter-core communication
Automated usage of BatchQueue for pipeline parallelism
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Contribution 1
BatchQueue: queue optimized for inter-core

communication
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Lamport: principle

Data exchanged by reads and writes in a shared buffer
⇒ data read/written sequentially, cycling at end of buffer

2 indices to memorize where to read/write next in the buffer
⇒ filling of buffer detected via indices comparison
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Cache consistency

Caches with same data must be
kept consistent

Consistency maintained by a
hardware component: MOESI

MOESI cache consistency protocol

Memory in caches divided in lines
⇒ Consistency enforced at cache line level
Lines in each cache have a consistency status:
Modified, Owned, Exclusive, Shared, Invalid
MOESI ensures only one line is in Modified or Owned state
⇒ Implements a Read/Write exclusion.

3 problems of performance arise from using MOESI
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Cache consistency protocol: cost

Communication required to update cache lines and their status
⇒ Cache consistency = slowdown

2 sources of communication
Write from Shared or Owned: invalidate remote cache lines
Read from Invalid: broadcast to find up-to-date line

Modify line in shared state Read line in exclusive state
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Lamport: cache friendliness

3 shared variables: buf, prod idx and cons idx

Lockless algorithm tailored to single core systems
1 high reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

14 / 40



Cache consistency: further slowdown

False sharing problem

Per cache line consistency status

⇒ data sharing detected at cache line level
⇒ accesses to , data from same cache line appears concurrent
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Lamport: cache friendliness

prod idx and cons idx may point to nearby entries

Lockless algorithm tailored to single core systems
1 high reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

2 false sharing
- producer and consumer often work on nearby entries
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False sharing due to prefetch

Prefetch consists in fetching data before they are needed
read + disjoint write access in same cache line = false sharing

⇒ Prefetch can create false sharing
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Lamport: cache friendliness

All entries read and written sequentially

Lockless algorithm tailored to single core systems
1 High reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

2 False sharing
- producer and consumer often work on nearby entries

3 Undesirable prefetch
- prefetch may create false sharing on distant entries
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State-of-the-art algorithms on multi-cores

Quantity False Wrong
of sharing sharing prefetch

Lamport [Lam83] All variables shared KO KO
FastForward [GMV08] Only buffer KO KO
CSQ [ZOYB09] N global variables OK KO
MCRingBuffer [LBC10] 2 global variables OK KO

Objectives

3 problems to solve:
1 Problem 1: excessive synchronization
2 Problem 2: false sharing of data
3 Problem 3: undesirable prefetch
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BatchQueue: principle

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
producer: switch status to 1 if equal to 0
consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice⇒ semi-buffers can be exchanged
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BatchQueue: cache friendliness (1)

2 private variables: prod idx and cons idx
2 semi-private buffers: buf1 and buf2
1 shared variable: status

Problem 1: reduce the amount of synchronization

+ batch processing for fewer synchronization
+ synchronize on a single variable
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BatchQueue: cache friendliness (2)

Problem 2: avoid false sharing

+ producer and consumer work on separate buffers
+ alignment of buffers and variables on cache line boundaries
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BatchQueue: cache friendliness (3)

Problem 3: prevent undesirable prefetch

+ padding between each component of the structure?
⇒ prevent optimizations possible with contiguous buffers
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Avoiding false sharing due to prefetch

Problem 3: prevent undesirable prefetch

+ Add some padding between semi-buffers and status variable
+ Access each semi-buffer through a different memory mapping
⇒ consistency of L1 caches based on virtual addresses
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Algorithms on multi-cores

Quantity False Wrong
of sharing sharing prefetch

Lamport [Lam83] All variables shared KO KO
FastForward [GMV08] Only buffer KO KO
CSQ [ZOYB09] N boolean variables OK KO
MCRingBuffer [LBC10] 2 variables OK KO
BatchQueue [PSTF10] 1 boolean variable OK OK

BatchQueue: lockless algorithm tailored to cache coherency
1 synchronization reduced and simplified
2 no false sharing of data
3 sharing made explicit with different memory mappings
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Microbench: test descriptions

Principle:

Send data between the two cores
Measure time to transfer all data

Two variants of the micro benchmark:

“comm” test⇒ measure maximum throughput
“matrix” test⇒ measure throughput when L1 under pressure

Machines:

bossa (except NUMA)
- Processors: Intel Xeon X5427 quad-core 3GHz,
- Memory: 10 GiB RAM, 32 KiB L1, 6 MiB L2 shared by pair
- System: Linux 3.2 (64 bits), gcc 4.6.3 (-03 + inline functions)

amd48 (for NUMA only)
- Processors: AMD Opteron 6172 hexa-core 2.1GHz
- Memory: 32 GiB RAM, 64 KiB L1, 512 KiB L2, 5 MiB L3
- System: Linux 3.0 (64 bits), gcc 4.6.3 (-03 + inline functions)
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Microbench evaluation: order of magnitude

Order of magnitude in speed of communication algorithms
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Microbench evaluation: default configuration

Comparison of communication algorithms with default configuration

“Comm” test “Matrix” test
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Microbench evaluation: fixed buffer size

Comparison of communication algorithms with same buffer size

“Comm” test “Matrix” test
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Microbench evaluation: cache sharing

Influence of memory hierarchy on BatchQueue’s performance

sharing of L2 cache sharing of memory node

Prefetch can only mitigate against small latencies
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Contribution 2
Automated usage of BatchQueue for pipeline parallelism
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Parallelization frameworks

Parallelizing a program requires a lot of commonplace code:
thread management (creation, scheduling, termination)
synchronization (mutex, barriers)
communication

Some high level frameworks exist to hide these details:
Data/task parallelism: OpenMP, Threading Building Blocks, Cilk
Plus, . . .
Pipeline parallelism: StreamIt, OpenMP stream-computing
extension

Improving these frameworks benefits all programs using them
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OpenMP stream-computing extension

OpenMP stream-computing extension offers a familiar syntax
⇒ more likely to be used by many programs

Example d’utilisation
#pragma omp parallel

#pragma omp single

for (i = 0; i < N; i++) {
#pragma omp task input(state) output (x, state)

x = compute update(&state);

#pragma omp task input (x)

retval = g(x);

}

. Thread Thread
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Improving OpenMP stream-computing extension

Problem
It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

1 MPMC incurs extra synchronization cost
(among producers and among consumers)

2 Pipeline parallelism is mostly about linear streams

Solution
Automatic selection of BatchQueue for linear streams
⇒ compatibility retained
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BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
1 make communication algorithms interchangeable
2 allow transparent use of BatchQueue

foo
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BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
1 make communication algorithms interchangeable
2 allow transparent use of BatchQueue

1st step: interchangeable communication algorithms

Adapt BatchQueue to OpenMP stream-computing extension API:

adopt similar function calling sequences: return value of
functions passed as parameter of subsequent function calls
adopt similar structure organisation: different functions are
passed in different structures
zero-copy communication: production and consumption
directly to and from the communication buffer
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BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
1 make communication algorithms interchangeable
2 allow transparent use of BatchQueue

2nd step: transparent use of BatchQueue

Automatic selection of BatchQueue for linear streams

Buffer size proportional to the number of participants
⇒ keep memory footprint of both algorithms similar
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FMradio

Function: FM demodulation via a serie of filters
Source: OpenMP stream-computing extension paper

Particularity: non linear pipeline

Machine quadhexa

- Processors: Intel Xeon X7460 hexa-core 2.6GHz,

- Memory: 126 GiB RAM, 32 KiB L1, 3 MiB L2 shared by pair

- System: Linux 3.6 (64 bits), gcc 4.6.0
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Trellis computation

Function: computation of the most likely CRC from a given analog signal
Source: Work from Alcatel-Lucent on AAC decoding
Particularity: fills a trellis with dependencies between columns
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Pipeline template

Function: template of code only parallelizable with pipeline parallelism
Particularity: backward dependencies between data units
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Conclusion

Optimized inter-core communication with BatchQueue:
1 Tackle problem with memory consistency

+ reduce the need for consistency
+ avoid false sharing when accessing buffer
+ prevent prefetch from creating false sharing
⇒ throughput improved up to a factor 2

2 Minimize memory footprint
+ low memory overhead
⇒ only one extra bit per queue to synchronize

Automated usage of BatchQueue for pipeline parallelism:
+ modifications transparent to applications using OpenMP
⇒ automatic selection of BatchQueue for linear streams

+ speedup improved in applications up to a factor 2
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Future work

Short term perspectives

Improve interaction with scheduler to reduce spinning
Fetch the status bit asynchronously using SMT + prefetch

Long term perspectives

Support 1-to-N and N-to-1 communication
⇒ create optimized algorithms for specialized cases
Support N-to-N communication
⇒ follow similar approach to make a cache friendly algorithm
Use BatchQueue in other domains

e.g.: offload some computation to a dedicated core
Adapt dynamically communication algorithms in applications
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