
An improvement of OpenMP pipeline
parallelism with the BatchQueue algorithm

Thomas Preud’homme

Team REGAL
Advisors: Julien Sopena et Gaël Thomas

Supervisor: Bertil Folliot

June 10, 2013

1 / 40



Moore’s law in modern CPU

Moore’s law: Number of transistors on chips doubles every 2 years

Now: CPU frequency stagnate, number of cores increases
⇒ parallelism is needed to take advantage of multi-core systems

2 / 40



Classical paradigms of parallel programming

Several paradigms of parallel programming already exist:

Task parallelism Data parallelism

E.g.: multitasking

Limit: needs independent tasks

E.g.: array/matrix processing

Limit: needs independent data

3 / 40



Task and data dependencies: video edition example

Some modern applications require complex computation but cannot
use task or data parallelism due to dependencies.
⇒ eg. audio and video processing

Example of video edition:
1 decode a frame into a bitmap image
2 rotate the image
3 trim the image

dependencies

“task”: transformations depend on result of previous
transformations in the chain
“data”: frame decoding depends on previously decoded frames

4 / 40



Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
Split frame processing in 3 sub-tasks:

1 decoding
2 rotation
3 trimming

Perform each sub-task on different cores
Make images flow from one sub-task to another
⇒ Sub-tasks performed in parallel for different images

5 / 40



Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
Split frame processing in 3 sub-tasks:

1 decoding
2 rotation
3 trimming

Perform each sub-task on different cores
Make images flow from one sub-task to another
⇒ Sub-tasks performed in parallel for different images

5 / 40



Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
Split frame processing in 3 sub-tasks:

1 decoding
2 rotation
3 trimming

Perform each sub-task on different cores
Make images flow from one sub-task to another
⇒ Sub-tasks performed in parallel for different images

5 / 40



Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
Split frame processing in 3 sub-tasks:

1 decoding
2 rotation
3 trimming

Perform each sub-task on different cores
Make images flow from one sub-task to another
⇒ Sub-tasks performed in parallel for different images

5 / 40



Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
Split frame processing in 3 sub-tasks:

1 decoding
2 rotation
3 trimming

Perform each sub-task on different cores
Make images flow from one sub-task to another
⇒ Sub-tasks performed in parallel for different images

5 / 40



Pipeline parallelism: general case

General principle

Divide a sequential code in several sub-tasks
Execute each sub-task on different cores
Make data flow from one sub-task to another
⇒ Sub-tasks run in parallel on different parts of the flow

6 / 40



Efficiency of pipeline parallelism

7 / 40



Efficiency of pipeline parallelism

Performance improvement with 6 cores instead of 3:
Latency: slower by 3 Tcomm

Throughput: about 2 times faster

7 / 40



Efficiency of pipeline parallelism

In the general case, performance for n cores is:
Latency: Ttask + (n − 1)Tcomm

Throughput: 1 output every Tsubtask + Tcomm
⇒ 1 output every Ttask

n + Tcomm

Problem
Communication time limits the speedup

7 / 40



Pipeline parallelism: limits

On n cores, one processing done every Ttask
n + Tcomm

Communication time limits the speedup !
⇒ Need for efficient inter-core communication

8 / 40



Problem statement

Problem 1
Current communication algorithms perform badly for inter-core
communication

Problem 2
Changing the communication algorithm of all/many programs doing
pipeline parallelism is impractical

Contributions
Two-fold solution:

BatchQueue: queue optimized for inter-core communication
Automated usage of BatchQueue for pipeline parallelism

9 / 40



Contribution 1
BatchQueue: queue optimized for inter-core

communication

10 / 40



Lamport: principle

Data exchanged by reads and writes in a shared buffer
⇒ data read/written sequentially, cycling at end of buffer

2 indices to memorize where to read/write next in the buffer
⇒ filling of buffer detected via indices comparison

11 / 40



Cache consistency

Caches with same data must be
kept consistent

Consistency maintained by a
hardware component: MOESI

MOESI cache consistency protocol

Memory in caches divided in lines
⇒ Consistency enforced at cache line level
Lines in each cache have a consistency status:
Modified, Owned, Exclusive, Shared, Invalid
MOESI ensures only one line is in Modified or Owned state
⇒ Implements a Read/Write exclusion.

3 problems of performance arise from using MOESI
12 / 40



Cache consistency protocol: cost

Communication required to update cache lines and their status
⇒ Cache consistency = slowdown

2 sources of communication
Write from Shared or Owned: invalidate remote cache lines
Read from Invalid: broadcast to find up-to-date line

Modify line in shared state Read line in exclusive state

13 / 40



Cache consistency protocol: cost

Communication required to update cache lines and their status
⇒ Cache consistency = slowdown

2 sources of communication
Write from Shared or Owned: invalidate remote cache lines
Read from Invalid: broadcast to find up-to-date line

Modify line in shared state Read line in exclusive state

13 / 40



Cache consistency protocol: cost

Communication required to update cache lines and their status
⇒ Cache consistency = slowdown

2 sources of communication
Write from Shared or Owned: invalidate remote cache lines
Read from Invalid: broadcast to find up-to-date line

Modify line in shared state Read line in exclusive state

13 / 40



Cache consistency protocol: cost

Communication required to update cache lines and their status
⇒ Cache consistency = slowdown

2 sources of communication
Write from Shared or Owned: invalidate remote cache lines
Read from Invalid: broadcast to find up-to-date line

Modify line in shared state Read line in exclusive state

13 / 40



Lamport: cache friendliness

3 shared variables: buf, prod idx and cons idx

Lockless algorithm tailored to single core systems
1 high reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

14 / 40



Cache consistency: further slowdown

False sharing problem

Per cache line consistency status

⇒ data sharing detected at cache line level
⇒ accesses to , data from same cache line appears concurrent

15 / 40



Cache consistency: further slowdown

False sharing problem

Per cache line consistency status

⇒ data sharing detected at cache line level
⇒ accesses to , data from same cache line appears concurrent

15 / 40



Cache consistency: further slowdown

False sharing problem

Per cache line consistency status

⇒ data sharing detected at cache line level
⇒ accesses to , data from same cache line appears concurrent

15 / 40



Cache consistency: further slowdown

False sharing problem

Per cache line consistency status

⇒ data sharing detected at cache line level
⇒ accesses to , data from same cache line appears concurrent

15 / 40



Lamport: cache friendliness

prod idx and cons idx may point to nearby entries

Lockless algorithm tailored to single core systems
1 high reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

2 false sharing
- producer and consumer often work on nearby entries

16 / 40



False sharing due to prefetch

Prefetch consists in fetching data before they are needed
read + disjoint write access in same cache line = false sharing

⇒ Prefetch can create false sharing

17 / 40



False sharing due to prefetch

Prefetch consists in fetching data before they are needed
read + disjoint write access in same cache line = false sharing

⇒ Prefetch can create false sharing

17 / 40



False sharing due to prefetch

Prefetch consists in fetching data before they are needed
read + disjoint write access in same cache line = false sharing

⇒ Prefetch can create false sharing

17 / 40



Lamport: cache friendliness

All entries read and written sequentially

Lockless algorithm tailored to single core systems
1 High reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

2 False sharing
- producer and consumer often work on nearby entries

3 Undesirable prefetch
- prefetch may create false sharing on distant entries

18 / 40



State-of-the-art algorithms on multi-cores

Quantity False Wrong
of sharing sharing prefetch

Lamport [Lam83] All variables shared KO KO
FastForward [GMV08] Only buffer KO KO
CSQ [ZOYB09] N global variables OK KO
MCRingBuffer [LBC10] 2 global variables OK KO

Objectives

3 problems to solve:
1 Problem 1: excessive synchronization
2 Problem 2: false sharing of data
3 Problem 3: undesirable prefetch

19 / 40



BatchQueue: principle

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
producer: switch status to 1 if equal to 0
consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice⇒ semi-buffers can be exchanged

20 / 40



BatchQueue: principle

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
producer: switch status to 1 if equal to 0
consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice⇒ semi-buffers can be exchanged

20 / 40



BatchQueue: principle

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
producer: switch status to 1 if equal to 0
consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice⇒ semi-buffers can be exchanged

20 / 40



BatchQueue: principle

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
producer: switch status to 1 if equal to 0
consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice⇒ semi-buffers can be exchanged

20 / 40



BatchQueue: principle

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
producer: switch status to 1 if equal to 0
consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice⇒ semi-buffers can be exchanged

20 / 40



BatchQueue: principle

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
producer: switch status to 1 if equal to 0
consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice⇒ semi-buffers can be exchanged

20 / 40



BatchQueue: cache friendliness (1)

2 private variables: prod idx and cons idx
2 semi-private buffers: buf1 and buf2
1 shared variable: status

Problem 1: reduce the amount of synchronization

+ batch processing for fewer synchronization
+ synchronize on a single variable

21 / 40



BatchQueue: cache friendliness (2)

Problem 2: avoid false sharing

+ producer and consumer work on separate buffers
+ alignment of buffers and variables on cache line boundaries

22 / 40



BatchQueue: cache friendliness (3)

Problem 3: prevent undesirable prefetch

+ padding between each component of the structure?
⇒ prevent optimizations possible with contiguous buffers

23 / 40



Avoiding false sharing due to prefetch

Problem 3: prevent undesirable prefetch

+ Add some padding between semi-buffers and status variable
+ Access each semi-buffer through a different memory mapping
⇒ consistency of L1 caches based on virtual addresses

24 / 40



Algorithms on multi-cores

Quantity False Wrong
of sharing sharing prefetch

Lamport [Lam83] All variables shared KO KO
FastForward [GMV08] Only buffer KO KO
CSQ [ZOYB09] N boolean variables OK KO
MCRingBuffer [LBC10] 2 variables OK KO
BatchQueue [PSTF10] 1 boolean variable OK OK

BatchQueue: lockless algorithm tailored to cache coherency
1 synchronization reduced and simplified
2 no false sharing of data
3 sharing made explicit with different memory mappings

25 / 40



Microbench: test descriptions

Principle:

Send data between the two cores
Measure time to transfer all data

Two variants of the micro benchmark:

“comm” test⇒ measure maximum throughput
“matrix” test⇒ measure throughput when L1 under pressure

Machines:

bossa (except NUMA)
- Processors: Intel Xeon X5427 quad-core 3GHz,
- Memory: 10 GiB RAM, 32 KiB L1, 6 MiB L2 shared by pair
- System: Linux 3.2 (64 bits), gcc 4.6.3 (-03 + inline functions)

amd48 (for NUMA only)
- Processors: AMD Opteron 6172 hexa-core 2.1GHz
- Memory: 32 GiB RAM, 64 KiB L1, 512 KiB L2, 5 MiB L3
- System: Linux 3.0 (64 bits), gcc 4.6.3 (-03 + inline functions)

26 / 40



Microbench evaluation: order of magnitude

Order of magnitude in speed of communication algorithms

27 / 40



Microbench evaluation: default configuration

Comparison of communication algorithms with default configuration

“Comm” test “Matrix” test

28 / 40



Microbench evaluation: fixed buffer size

Comparison of communication algorithms with same buffer size

“Comm” test “Matrix” test

29 / 40



Microbench evaluation: cache sharing

Influence of memory hierarchy on BatchQueue’s performance

sharing of L2 cache sharing of memory node

Prefetch can only mitigate against small latencies

30 / 40



Contribution 2
Automated usage of BatchQueue for pipeline parallelism

31 / 40



Parallelization frameworks

Parallelizing a program requires a lot of commonplace code:
thread management (creation, scheduling, termination)
synchronization (mutex, barriers)
communication

Some high level frameworks exist to hide these details:
Data/task parallelism: OpenMP, Threading Building Blocks, Cilk
Plus, . . .
Pipeline parallelism: StreamIt, OpenMP stream-computing
extension

Improving these frameworks benefits all programs using them

32 / 40



OpenMP stream-computing extension

OpenMP stream-computing extension offers a familiar syntax
⇒ more likely to be used by many programs

Example d’utilisation
#pragma omp parallel

#pragma omp single

for (i = 0; i < N; i++) {
#pragma omp task input(state) output (x, state)

x = compute update(&state);

#pragma omp task input (x)

retval = g(x);

}

. Thread Thread

33 / 40



Improving OpenMP stream-computing extension

Problem
It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

1 MPMC incurs extra synchronization cost
(among producers and among consumers)

2 Pipeline parallelism is mostly about linear streams

Solution
Automatic selection of BatchQueue for linear streams
⇒ compatibility retained

34 / 40



Improving OpenMP stream-computing extension

Problem
It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

1 MPMC incurs extra synchronization cost
(among producers and among consumers)

2 Pipeline parallelism is mostly about linear streams

Solution
Automatic selection of BatchQueue for linear streams
⇒ compatibility retained

34 / 40



Improving OpenMP stream-computing extension

Problem
It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

1 MPMC incurs extra synchronization cost
(among producers and among consumers)

2 Pipeline parallelism is mostly about linear streams

Solution
Automatic selection of BatchQueue for linear streams
⇒ compatibility retained

34 / 40



BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
1 make communication algorithms interchangeable
2 allow transparent use of BatchQueue

foo

35 / 40



BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
1 make communication algorithms interchangeable
2 allow transparent use of BatchQueue

1st step: interchangeable communication algorithms

Adapt BatchQueue to OpenMP stream-computing extension API:

adopt similar function calling sequences: return value of
functions passed as parameter of subsequent function calls
adopt similar structure organisation: different functions are
passed in different structures
zero-copy communication: production and consumption
directly to and from the communication buffer

35 / 40



BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
1 make communication algorithms interchangeable
2 allow transparent use of BatchQueue

2nd step: transparent use of BatchQueue

Automatic selection of BatchQueue for linear streams

Buffer size proportional to the number of participants
⇒ keep memory footprint of both algorithms similar

35 / 40



FMradio

Function: FM demodulation via a serie of filters
Source: OpenMP stream-computing extension paper

Particularity: non linear pipeline

Machine quadhexa

- Processors: Intel Xeon X7460 hexa-core 2.6GHz,

- Memory: 126 GiB RAM, 32 KiB L1, 3 MiB L2 shared by pair

- System: Linux 3.6 (64 bits), gcc 4.6.0

36 / 40



FMradio

Function: FM demodulation via a serie of filters
Source: OpenMP stream-computing extension paper
Particularity: non linear pipeline

36 / 40



Trellis computation

Function: computation of the most likely CRC from a given analog signal
Source: Work from Alcatel-Lucent on AAC decoding
Particularity: fills a trellis with dependencies between columns

37 / 40



Trellis computation

Function: computation of the most likely CRC from a given analog signal
Source: Work from Alcatel-Lucent on AAC decoding
Particularity: fills a trellis with dependencies between columns

37 / 40



Pipeline template

Function: template of code only parallelizable with pipeline parallelism
Particularity: backward dependencies between data units

38 / 40



Conclusion

Optimized inter-core communication with BatchQueue:
1 Tackle problem with memory consistency

+ reduce the need for consistency
+ avoid false sharing when accessing buffer
+ prevent prefetch from creating false sharing
⇒ throughput improved up to a factor 2

2 Minimize memory footprint
+ low memory overhead
⇒ only one extra bit per queue to synchronize

Automated usage of BatchQueue for pipeline parallelism:
+ modifications transparent to applications using OpenMP
⇒ automatic selection of BatchQueue for linear streams

+ speedup improved in applications up to a factor 2

39 / 40



Future work

Short term perspectives

Improve interaction with scheduler to reduce spinning
Fetch the status bit asynchronously using SMT + prefetch

Long term perspectives

Support 1-to-N and N-to-1 communication
⇒ create optimized algorithms for specialized cases
Support N-to-N communication
⇒ follow similar approach to make a cache friendly algorithm
Use BatchQueue in other domains

e.g.: offload some computation to a dedicated core
Adapt dynamically communication algorithms in applications

40 / 40



J. Giacomoni, T. Mosely, and M. Vachharajani.
Fastforward for efficient pipeline parallelism: A cache-optimized
concurrent lock-free queue.
In Proceedings of the The 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. ACM Press,
2008.

Leslie Lamport.
Specifying concurrent program modules.
ACM Trans. Program. Lang. Syst., 5(2):190–222, 1983.

P.P.C. Lee, T. Bu, and G. Chandranmenon.
A Lock-Free, Cache-Efficient Multi-Core Synchronization
Mechanism for Line-Rate Network Traffic Monitoring.
In IPDPS ’10: Proceedings of 24th IEEE International Parallel
and Distributed Processing Symposium, 2010.

Thomas Preud’homme, Julien Sopena, Gaël Thomas, and Bertil
Folliot.
Batchqueue: Fast and memory-thrifty core to core
communication.
In 2010 22nd International Symposium on Computer Architecture
and High Performance Computing, pages 215–222. IEEE, 2010.

40 / 40



Y. Zhang, K. Ootsu, T. Yokota, and T. Baba.
Clustered Communication for Efficient Pipelined Multithreading
on Commodity MCPs.
IAENG International Journal of Computer Science, 36, 2009.

40 / 40


	Context
	Impact of cache consistency system
	BatchQueue SPSC
	BatchQueue's evaluation
	BatchQueue in OpenMP stream-computing extension
	Improvement of pipeline parallelism with BatchQueue

