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Moore’s law in modern CPU

Moore’s law: Number of transistors on chips doubles every 2 years
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Now: CPU frequency stagnate, number of cores increases
= parallelism is needed to take advantage of multi-core systems



Classical paradigms of parallel programming

Several paradigms of parallel programming already exist:

Task parallelism Data parallelism
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E.g.: multitasking E.g.: array/matrix processing

Limit: needs independent tasks Limit: needs independent data



Task and data dependencies: video edition example

Some modern applications require complex computation but cannot
use task or data parallelism due to dependencies.
= eg. audio and video processing

Example of video edition:

@ decode a frame into a bitmap image
@ rotate the image

@ trim the image

dependencies

@ “task”: transformations depend on result of previous
transformations in the chain

@ “data”: frame decoding depends on previously decoded frames
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Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
@ Split frame processing in 3 sub-tasks:

@ decoding
@ rotation
@ trimming

@ Perform each sub-task on different cores

@ Make images flow from one sub-task to another
= Sub-tasks performed in parallel for different images

Core 1 Core 2 Core 3

== " Decoding _’ Rotation _’ Trimming r "

Frame processing
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Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
@ Split frame processing in 3 sub-tasks:

@ decoding
@ rotation
@ trimming

@ Perform each sub-task on different cores

@ Make images flow from one sub-task to another
= Sub-tasks performed in parallel for different images
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Pipeline parallelism: general case

General principle

@ Divide a sequential code in several sub-tasks
@ Execute each sub-task on different cores

@ Make data flow from one sub-task to another
= Sub-tasks run in parallel on different parts of the flow

Core 1 Core 2 Core 3
-~ Subtask 1/3 Subtask 2/3 Subtask 3/3 -4 -p data i1
(data i+2) (data i+1) (data i)

Task




Efficiency of pipeline parallelism
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Efficiency of pipeline parallelism
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Performance improvement with 6 cores instead of 3:
@ Latency: slower by 3 Tcomm
@ Throughput: about 2 times faster



Efficiency of pipeline parallelism

Core 1 Core 2 Core 3
== Subtask 1/3 Subtask 2/3 — Subtask 3/3 F 4 =P datail
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In the general case, performance for n cores is:
@ Latency: Tisk + (N —1) Teomm

@ Throughput: 1 outeut every Teuptask + Tcomm
= 1 output every =2 + Toon

Problem

Communication time limits the speedup




Pipeline parallelism: limits

On n cores, one processing done every % + Teomm

16

Ideal speedup
Low Tcomm (2% Ttask)
14+ Medium Tcomm (5% Ttask)
High Tcomm (10% Ttask)

Theoritical speedup
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Communication time limits the speedup !
= Need for efficient inter-core communication



Problem statement

Problem 1

Current communication algorithms perform badly for inter-core
communication

Problem 2

Changing the communication algorithm of all/many programs doing
pipeline parallelism is impractical

v

Contributions

Two-fold solution:
@ BatchQueue: queue optimized for inter-core communication
@ Automated usage of BatchQueue for pipeline parallelism




Contribution 1

BatchQueue: queue optimized for inter-core
communication
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Lamport: principle

¢ cons_idx

buf prod_idx

@ Data exchanged by reads and writes in a shared buffer
= data read/written sequentially, cycling at end of buffer

@ 2 indices to memorize where to read/write next in the buffer
= filling of buffer detected via indices comparison
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Cache consistency

L1 cache

L1 cache

L2 cache

@ Caches with same data must be
kept consistent

@ Consistency maintained by a
hardware component: MOESI

MOESI cache consistency protocol

@ Memory in caches divided in lines
= Consistency enforced at cache line level

@ Lines in each cache have a consistency status:
Modified, Owned, Exclusive, Shared, Invalid

@ MOESI ensures only one line is in Modified or Owned state
= Implements a Read/Write exclusion.

A 3 problems of performance arise from using MOESI
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Cache consistency protocol: cost

Communication required to update cache lines and their status
= Cache consistency = slowdown

2 sources of communication
@ Write from Shared or Owned: invalidate remote cache lines
@ Read from Invalid: broadcast to find up-to-date line

L1 cache L1 cache L1 cache L1 cache

L2 cache L2 cache

Modify line in shared state Read line in exclusive state
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Cache consistency protocol: cost

Communication required to update cache lines and their status
= Cache consistency = slowdown

2 sources of communication
@ Write from Shared or Owned: invalidate remote cache lines

@ Read from Invalid: broadcast to find up-to-date line
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Lamport: cache friendliness

¢ cons_idx

buf prod_idx

3 shared variables: buf, prod_idx and cons_idx

Lockless algorithm tailored to single core systems

@ high reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization
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Cache consistency: further slowdown

False sharing problem
Per cache line consistency status

= data sharing detected at cache line level
= accesses to # data from same cache line appears concurrent

L1 cache L1 cache

L2 cache
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Cache consistency: further slowdown

False sharing problem
Per cache line consistency status

= data sharing detected at cache line level
= accesses to # data from same cache line appears concurrent
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Lamport: cache friendliness

¢ cons_idx |

buf prod_idx

prod_idx and cons_idx may point to nearby entries

Lockless algorithm tailored to single core systems

@ high reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

@ false sharing
- producer and consumer often work on nearby entries
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False sharing due to prefetch

@ Prefetch consists in fetching data before they are needed
@ read + disjoint write access in same cache line = false sharing

= | Prefetch can create false sharing |

L1 cache L1 cache

L2 cache
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False sharing due to prefetch

@ Prefetch consists in fetching data before they are needed
@ read + disjoint write access in same cache line = false sharing
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Lamport: cache friendliness

¢ cons_idx I

buf prod_idx

All entries read and written sequentially

Lockless algorithm tailored to single core systems

@ High reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

© False sharing

- producer and consumer often work on nearby entries
© Undesirable prefetch

- prefetch may create false sharing on distant entries
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State-of-the-art algorithms on multi-cores

Quantity False Wrong

of sharing sharing | prefetch
Lamport [Lam83] All variables shared KO KO
FastForward [GMV08] Only buffer KO KO
CSQ [ZzOYB09] N global variables KO
MCRingBuffer [LBC10] | 2 global variables KO

Objectives

3 problems to solve:
@ Problem 1: excessive synchronization
© Problem 2: false sharing of data
© Problem 3: undesirable prefetch
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BatchQueue: principle

buf1 ¢ cons_idx |
1

buf2 status | prod_idx

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
@ producer: switch status to 1 if equal to 0
@ consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice = semi-buffers can be exchanged
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BatchQueue: cache friendliness (1)

buf 1 v

cons_idx

NNNNE

buf2 status

2 private variables: prod.idx and cons_idx
2 semi-private buffers: buf1 and buf2
1 shared variable: status

Problem 1: reduce the amount of synchronization

prod_id

bl

+ batch processing for fewer synchronization
+ synchronize on a single variable
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BatchQueue: cache friendliness (2)

buf1 ¢ cons_idx I

1
buf2 status | prod_idx

Problem 2: avoid false sharing

+ producer and consumer work on separate buffers
+ alignment of buffers and variables on cache line boundaries
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BatchQueue: cache friendliness (3)

Virtual address space

Semi-buffer 1

YIS SIS,

Semi-buffer 2

IS SIS,

Status

Problem 3: prevent undesirable prefetch

+ padding between each component of the structure?
= prevent optimizations possible with contiguous buffers
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Avoiding false sharing due to prefetch

Virtual address space

0x1000

Physical address space
Semi-buffer 1
Semi-buffer 2 '
¢ //S/tat/////
us
Semi-buffer 1
Semi-buffer 2

IS SIS,

Status

0x2000

Semi-buffer 1
Semi-buffer 2

AL LII D,

Status

Problem 3: prevent undesirable prefetch

+ Add some padding between semi-buffers and status variable

+ Access each semi-buffer through a different memory mapping
= consistency of L1 caches based on virtual addresses
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Algorithms on multi-cores

Quantity False Wrong

of sharing sharing | prefetch
Lamport [Lam83] All variables shared KO KO
FastForward [GMV08] Only buffer KO KO
CSQ [ZzOYB09] N boolean variables KO
MCRingBuffer [LBC10] 2 variables KO
BatchQueue [PSTF10]

BatchQueue: lockless algorithm tailored to cache coherency

@ synchronization reduced and simplified
@ no false sharing of data
© sharing made explicit with different memory mappings
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Microbench: test descriptions

Principle:
@ Send data between the two cores
@ Measure time to transfer all data

Two variants of the micro benchmark:

@ “comm” test = measure maximum throughput
@ “matrix” test = measure throughput when L1 under pressure

Machines:

@ bossa (except NUMA)

- Processors: Intel Xeon X5427 quad-core 3GHz,
- Memory: 10 GiB RAM, 32 KiB L1, 6 MiB L2 shared by pair
- System: Linux 3.2 (64 bits), gcc 4.6.3 (-03 + inline functions)

@ amd48 (for NUMA only)

- Processors: AMD Opteron 6172 hexa-core 2.1GHz
- Memory: 32 GiB RAM, 64 KiB L1, 512 KiB L2, 5 MiB L3
- System: Linux 3.0 (64 bits), gcc 4.6.3 (-03 + inline functions)
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Microbench evaluation: order of magnitude

Order of magnitude in speed of communication algorithms
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Microbench evaluation: default configuration

Comparison of communication algorithms with default configuration

“Comm” test “Matrix” test
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399 418
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Microbench evaluation: fixed buffer size

Comparison of communication algorithms with same buffer size

“Comm” test “Matrix” test
T T T 600 T T T

3000 T

2478 493
430

2500 456

2000
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1500

MB/s

1000
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MB/s

Microbench evaluation: cache sharing

Influence of memory hierarchy on BatchQueue’s performance
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Prefetch can only mitigate against small latencies
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Contribution 2

Automated usage of BatchQueue for pipeline parallelism
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Parallelization frameworks

Parallelizing a program requires a lot of commonplace code:
@ thread management (creation, scheduling, termination)
@ synchronization (mutex, barriers)

@ communication

Some high level frameworks exist to hide these details:

@ Data/task parallelism: OpenMP, Threading Building Blocks, Cilk
Plus, ...

@ Pipeline parallelism: Streamlt, OpenMP stream-computing
extension

Improving these frameworks benefits all programs using them
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OpenMP stream-computing extension

OpenMP stream-computing extension offers a familiar syntax
= more likely to be used by many programs

Example d’utilisation

#pragma omp parallel
#pragma omp single
for (i = 0; i < N; i++) {
#pragma omp task input(state) output (x, state)
= compute_update(&state);

#pragma omp task input (x)
retval = g(x);

state

N
compute_update() X

Thread Thread
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Improving OpenMP stream-computing extension

It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

@ MPMC incurs extra synchronization cost
(among producers and among consumers)

@ Pipeline parallelism is mostly about linear streams
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Improving OpenMP stream-computing extension

It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

@ MPMC incurs extra synchronization cost
(among producers and among consumers)

@ Pipeline parallelism is mostly about linear streams

@ D—0
. )%) ©~@~€ Z =
-~ @€

Automatic selection of BatchQueue for linear streams
= compatibility retained
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BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
@ make communication algorithms interchangeable
© allow transparent use of BatchQueue
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BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
@ make communication algorithms interchangeable

’ 1st step: interchangeable communication algorithms

Adapt BatchQueue to OpenMP stream-computing extension API:
@ adopt similar function calling sequences: return value of
functions passed as parameter of subsequent function calls

@ adopt similar structure organisation: different functions are
passed in different structures

@ zero-copy communication: production and consumption
directly to and from the communication buffer
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BatchQueue in OpenMP stream-computing extension

2 sets of modifications:

@ allow transparent use of BatchQueue

’ 2nd step: transparent use of BatchQueue

@ Automatic selection of BatchQueue for linear streams

@ Buffer size proportional to the number of participants
= keep memory footprint of both algorithms similar
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Function: FM demodulation via a serie of filters
Source: OpenMP stream-computing extension paper

Machine quadhexa
- Processors: Intel Xeon X7460 hexa-core 2.6GHz,

- Memory: 126 GiB RAM, 32 KiB L1, 3 MiB L2 shared by pair
- System: Linux 3.6 (64 bits), gcc 4.6.0
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Function: FM demodulation via a serie of filters
Source: OpenMP stream-computing extension paper
Particularity: non linear pipeline

Structure analysis of the pipeline

4
3.5
3k
e 25
& 15+
1¥
0.5 |-
0

GOMP stream BatchQueue

36/40



Trellis computation

Function: computation of the most likely CRC from a given analog signal
Source: Work from Alcatel-Lucent on AAC decoding
Particularity: fills a trellis with dependencies between columns
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Pipeline template

Function: template of code only parallelizable with pipeline parallelism
Particularity: backward dependencies between data units
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Conclusion

@ Optimized inter-core communication with BatchQueue:
@ Tackle problem with memory consistency

+ reduce the need for consistency

+ avoid false sharing when accessing buffer

+ prevent prefetch from creating false sharing
= throughput improved up to a factor 2

@ Minimize memory footprint

+ low memory overhead
= only one extra bit per queue to synchronize

@ Automated usage of BatchQueue for pipeline parallelism:

+ modifications transparent to applications using OpenMP
= automatic selection of BatchQueue for linear streams
+ speedup improved in applications up to a factor 2
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Short term perspectives

@ Improve interaction with scheduler to reduce spinning
@ Fetch the status bit asynchronously using SMT + prefetch

<

Long term perspectives

@ Support 1-to-N and N-to-1 communication
= create optimized algorithms for specialized cases

@ Support N-to-N communication
= follow similar approach to make a cache friendly algorithm

@ Use BatchQueue in other domains
e.g.: offload some computation to a dedicated core

@ Adapt dynamically communication algorithms in applications
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