An improvement of OpenMP pipeline

parallelism with the BatchQueue algorithm

Thomas Preud’homme

Team REGAL
Advisors: Julien Sopena et Gaél Thomas
Supervisor: Bertil Folliot

uPmC UBs Lism—

IAA1 SORBONNE

June 10, 2013

40

Moore’s law in modern CPU

Moore’s law: Number of transistors on chips doubles every 2 years

10,000,000

M Transistors (000)

1,000,000

Dual-Core Itanium 2
.

Intel|CPU Trends

(sources: Intel, Wikipedia, K. Olukotun}

;
-

100,000

10,000

@ Clock speed (MHz)

100 | A Power (W)
[. A “
A.‘
10 “
‘/S .o oo - @ Perf / clock (ILP)
i z
o R
T . |
coe

o
T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Now: CPU frequency stagnate, number of cores increases
= parallelism is needed to take advantage of multi-core systems

Classical paradigms of parallel programming

Several paradigms of parallel programming already exist:

Task parallelism Data parallelism

Unprocessed Unprocessed Unprocessed Unprocessed
datai datai dataj data k
el iy . 1 1 1
- H
Y i A 4 A 4 A 4
Core 1 Core 2 Core 3 Core 1 Core 2 Core 3
Task 1 Task 2 Task 3 Task Task Task Task
(data i) (data i) (data i) H (data i) (data j) (data k)
~< T _ T T T
Task Task Task :
~ -
AY & M M M
Resulting Resulting Resulting Resulting
datai datai data j data k

E.g.: multitasking E.g.: array/matrix processing

Limit: needs independent tasks Limit: needs independent data

Task and data dependencies: video edition example

Some modern applications require complex computation but cannot
use task or data parallelism due to dependencies.
= eg. audio and video processing

Example of video edition:

@ decode a frame into a bitmap image
@ rotate the image

@ trim the image

dependencies

@ “task”: transformations depend on result of previous
transformations in the chain

@ “data”: frame decoding depends on previously decoded frames

40

Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
@ Split frame processing in 3 sub-tasks:

@ decoding
@ rotation
@ trimming

@ Perform each sub-task on different cores

@ Make images flow from one sub-task to another
= Sub-tasks performed in parallel for different images

Core 1 Core 2 Core 3

== " Decoding _’ Rotation _’ Trimming r "

Frame processing

Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
@ Split frame processing in 3 sub-tasks:

@ decoding
@ rotation
@ trimming

@ Perform each sub-task on different cores

@ Make images flow from one sub-task to another
= Sub-tasks performed in parallel for different images

Core 1 Core 2 Core 3
== " Decoding ’ Rotation ’ Trimming r '}
[frame 1]

Frame processing

Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
@ Split frame processing in 3 sub-tasks:

@ decoding
@ rotation
@ trimming

@ Perform each sub-task on different cores

@ Make images flow from one sub-task to another
= Sub-tasks performed in parallel for different images

Core 1 Core 2 Core 3
== " Decoding ’ Rotation ’ Trimming r '}
[frame 2| [frame 1]

Frame processing

Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
@ Split frame processing in 3 sub-tasks:

@ decoding
@ rotation
@ trimming

@ Perform each sub-task on different cores

@ Make images flow from one sub-task to another
= Sub-tasks performed in parallel for different images

Core 1 Core 2 Core 3
== " Decoding ’ Rotation ’ Trimming r '}
[frame 3] [frame 2| [frame 1]

Frame processing

Pipeline parallelism to the rescue

Method to increase the number of images processed per second:
@ Split frame processing in 3 sub-tasks:

@ decoding
@ rotation
@ trimming

@ Perform each sub-task on different cores

@ Make images flow from one sub-task to another
= Sub-tasks performed in parallel for different images

Core 1 Core 2 Core 3
== " Decoding ’ Rotation ’ Trimming r 'b-
[frame 4] [frame 3] [frame 2|

Frame processing

Pipeline parallelism: general case

General principle

@ Divide a sequential code in several sub-tasks
@ Execute each sub-task on different cores

@ Make data flow from one sub-task to another
= Sub-tasks run in parallel on different parts of the flow

Core 1 Core 2 Core 3
-~ Subtask 1/3 Subtask 2/3 Subtask 3/3 -4 -p data i1
(data i+2) (data i+1) (data i)

Task

Efficiency of pipeline parallelism

Core 1 Core 2 Core 3
-- Subtask 1/3 —> Subtask 2/3 —> Subtask 3/3 F 4 =P data i1
(data i+2) (data i+1) (data i)
Task

Efficiency of pipeline parallelism

Core 1 Core 2 Core 3
== Subtask 1/3 Subtask 2/3 — Subtask 3/3 F 4 =P datail
(data i+2) (data i+1) (data i)
x 2(Task
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6
== Subtask 1/6 — Subtask 2/6 —> Subtask 3/6 — Subtask 4/6 —> Subtask 5/6 — Subtask 6/6 [7 =P data i1
(data i+5) (data i+4) (data i+3) (data i+2) (data i+1) (data i)
Task

Performance improvement with 6 cores instead of 3:
@ Latency: slower by 3 Tcomm
@ Throughput: about 2 times faster

Efficiency of pipeline parallelism

Core 1 Core 2 Core 3
== Subtask 1/3 Subtask 2/3 — Subtask 3/3 F 4 =P datail
(data i+2) (data i+1) (data i)
X 2[Task
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6
- = P subtask 1/6 P subtask 2/6 P subtask 3/6 P subtask 4/6 — subtask 5/6 P subtask 6/6 [" =P data i1
(data i+5) (data i+4) (data i+3) (data i+2) (data i+1) (data i)
Task

In the general case, performance for n cores is:
@ Latency: Tisk + (N —1) Teomm

@ Throughput: 1 outeut every Teuptask + Tcomm
= 1 output every =2 + Toon

Problem

Communication time limits the speedup

Pipeline parallelism: limits

On n cores, one processing done every % + Teomm

16

Ideal speedup
Low Tcomm (2% Ttask)
14+ Medium Tcomm (5% Ttask)
High Tcomm (10% Ttask)

Theoritical speedup

T T T
2 4 6 8 10 12 14 16 18 20

Number of processing units (n)

Communication time limits the speedup !
= Need for efficient inter-core communication

Problem statement

Problem 1

Current communication algorithms perform badly for inter-core
communication

Problem 2

Changing the communication algorithm of all/many programs doing
pipeline parallelism is impractical

v

Contributions

Two-fold solution:
@ BatchQueue: queue optimized for inter-core communication
@ Automated usage of BatchQueue for pipeline parallelism

Contribution 1

BatchQueue: queue optimized for inter-core
communication

10/40

Lamport: principle

¢ cons_idx

buf prod_idx

@ Data exchanged by reads and writes in a shared buffer
= data read/written sequentially, cycling at end of buffer

@ 2 indices to memorize where to read/write next in the buffer
= filling of buffer detected via indices comparison

11/40

Cache consistency

L1 cache

L1 cache

L2 cache

@ Caches with same data must be
kept consistent

@ Consistency maintained by a
hardware component: MOESI

MOESI cache consistency protocol

@ Memory in caches divided in lines
= Consistency enforced at cache line level

@ Lines in each cache have a consistency status:
Modified, Owned, Exclusive, Shared, Invalid

@ MOESI ensures only one line is in Modified or Owned state
= Implements a Read/Write exclusion.

A 3 problems of performance arise from using MOESI

12/40

Cache consistency protocol: cost

Communication required to update cache lines and their status
= Cache consistency = slowdown

2 sources of communication
@ Write from Shared or Owned: invalidate remote cache lines
@ Read from Invalid: broadcast to find up-to-date line

L1 cache L1 cache L1 cache L1 cache

L2 cache L2 cache

Modify line in shared state Read line in exclusive state

13/40

Cache consistency protocol: cost

Communication required to update cache lines and their status
= Cache consistency = slowdown

2 sources of communication
@ Write from Shared or Owned: invalidate remote cache lines

@ Read from Invalid: broadcast to find up-to-date line

L1 cache

L1 cache L1 cache L1 cache

e [codeine 1]

L2 cache L2 cache

Modify line in shared state Read line in exclusive state

13/40

Cache consistency protocol: cost

Communication required to update cache lines and their status
= Cache consistency = slowdown

2 sources of communication
@ Write from Shared or Owned: invalidate remote cache lines

@ Read from Invalid: broadcast to find up-to-date line

L1 cache L1 cache L1 cache

2)
= v—

L2 cache L2 cache

[¢)]
L —
L1 cache

Modify line in shared state Read line in exclusive state

13/40

Cache consistency protocol: cost

Communication required to update cache lines and their status
= Cache consistency = slowdown

2 sources of communication
@ Write from Shared or Owned: invalidate remote cache lines

@ Read from Invalid: broadcast to find up-to-date line

i A
L1 cache

L1 cache L1 cache L1 cache

e [codeine 1]

L2 cache L2 cache

3)

Modify line in shared state Read line in exclusive state

13/40

Lamport: cache friendliness

¢ cons_idx

buf prod_idx

3 shared variables: buf, prod_idx and cons_idx

Lockless algorithm tailored to single core systems

@ high reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

14/40

Cache consistency: further slowdown

False sharing problem
Per cache line consistency status

= data sharing detected at cache line level
= accesses to # data from same cache line appears concurrent

L1 cache L1 cache

L2 cache

15/40

Cache consistency: further slowdown

False sharing problem
Per cache line consistency status

= data sharing detected at cache line level
= accesses to # data from same cache line appears concurrent

L1 cache L1 cache

L2 cache

15/40

Cache consistency: further slowdown

False sharing problem
Per cache line consistency status

= data sharing detected at cache line level
= accesses to # data from same cache line appears concurrent

L1 cache L1 cache

Y

L2 cache

15/40

Cache consistency: further slowdown

False sharing problem
Per cache line consistency status

= data sharing detected at cache line level
= accesses to # data from same cache line appears concurrent

/
(4 Gaeine 2] |

L1 cache L1 cache

L2 cache

15/40

Lamport: cache friendliness

¢ cons_idx |

buf prod_idx

prod_idx and cons_idx may point to nearby entries

Lockless algorithm tailored to single core systems

@ high reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

@ false sharing
- producer and consumer often work on nearby entries

16/40

False sharing due to prefetch

@ Prefetch consists in fetching data before they are needed
@ read + disjoint write access in same cache line = false sharing

= | Prefetch can create false sharing |

L1 cache L1 cache

L2 cache

17/40

False sharing due to prefetch

@ Prefetch consists in fetching data before they are needed
@ read + disjoint write access in same cache line = false sharing

= | Prefetch can create false sharing |

L1 cache L1 cache

L2 cache

17/40

False sharing due to prefetch

@ Prefetch consists in fetching data before they are needed
@ read + disjoint write access in same cache line = false sharing

= | Prefetch can create false sharing |

INVALID

L1 cache L1 cache

L2 cache

17/40

Lamport: cache friendliness

¢ cons_idx I

buf prod_idx

All entries read and written sequentially

Lockless algorithm tailored to single core systems

@ High reliance on memory consistency

- synchronization for each production and consumption
- 2 variables needed for synchronization

© False sharing

- producer and consumer often work on nearby entries
© Undesirable prefetch

- prefetch may create false sharing on distant entries

18/40

State-of-the-art algorithms on multi-cores

Quantity False Wrong

of sharing sharing | prefetch
Lamport [Lam83] All variables shared KO KO
FastForward [GMV08] Only buffer KO KO
CSQ [ZzOYB09] N global variables KO
MCRingBuffer [LBC10] | 2 global variables KO

Objectives

3 problems to solve:
@ Problem 1: excessive synchronization
© Problem 2: false sharing of data
© Problem 3: undesirable prefetch

19/40

BatchQueue: principle

buf1 ¢ cons_idx |
1

buf2 status | prod_idx

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
@ producer: switch status to 1 if equal to 0
@ consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice = semi-buffers can be exchanged

20/40

BatchQueue: principle

cons_idx |

1

buf2 status | prod_idx

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
@ producer: switch status to 1 if equal to 0
@ consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice = semi-buffers can be exchanged

20/40

BatchQueue: principle

cons_idx |

1

buf2 status | prod_idx

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
@ producer: switch status to 1 if equal to 0
@ consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice = semi-buffers can be exchanged

20/40

BatchQueue: principle

¢ buf 1 cons_idx |

0
buf2 status | prod_idx

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
@ producer: switch status to 1 if equal to 0
@ consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice = semi-buffers can be exchanged

20/40

BatchQueue: principle

¢ buf 1 cons_idx |

0
buf2 status | prod_idx

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
@ producer: switch status to 1 if equal to 0
@ consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice = semi-buffers can be exchanged

20/40

BatchQueue: principle

%uf 1 cons_idx |

1
buf2 status | prod_idx

Communication through 2 semi-buffers:
production in one semi-buffer, consumption in the other

When one semi-buffer is fully filled/emptied:
@ producer: switch status to 1 if equal to 0
@ consumer: switch status to 0 if equal to 1

Synchronization invariant

status switched twice = semi-buffers can be exchanged

20/40

BatchQueue: cache friendliness (1)

buf 1 v

cons_idx

NNNNE

buf2 status

2 private variables: prod.idx and cons_idx
2 semi-private buffers: buf1 and buf2
1 shared variable: status

Problem 1: reduce the amount of synchronization

prod_id

bl

+ batch processing for fewer synchronization
+ synchronize on a single variable

21/40

BatchQueue: cache friendliness (2)

buf1 ¢ cons_idx I

1
buf2 status | prod_idx

Problem 2: avoid false sharing

+ producer and consumer work on separate buffers
+ alignment of buffers and variables on cache line boundaries

22/40

BatchQueue: cache friendliness (3)

Virtual address space

Semi-buffer 1

YIS SIS,

Semi-buffer 2

IS SIS,

Status

Problem 3: prevent undesirable prefetch

+ padding between each component of the structure?
= prevent optimizations possible with contiguous buffers

23/40

Avoiding false sharing due to prefetch

Virtual address space

0x1000

Physical address space
Semi-buffer 1
Semi-buffer 2 '
¢ //S/tat/////
us
Semi-buffer 1
Semi-buffer 2

IS SIS,

Status

0x2000

Semi-buffer 1
Semi-buffer 2

AL LII D,

Status

Problem 3: prevent undesirable prefetch

+ Add some padding between semi-buffers and status variable

+ Access each semi-buffer through a different memory mapping
= consistency of L1 caches based on virtual addresses

24/40

Algorithms on multi-cores

Quantity False Wrong

of sharing sharing | prefetch
Lamport [Lam83] All variables shared KO KO
FastForward [GMV08] Only buffer KO KO
CSQ [ZzOYB09] N boolean variables KO
MCRingBuffer [LBC10] 2 variables KO
BatchQueue [PSTF10]

BatchQueue: lockless algorithm tailored to cache coherency

@ synchronization reduced and simplified
@ no false sharing of data
© sharing made explicit with different memory mappings

25/40

Microbench: test descriptions

Principle:
@ Send data between the two cores
@ Measure time to transfer all data

Two variants of the micro benchmark:

@ “comm” test = measure maximum throughput
@ “matrix” test = measure throughput when L1 under pressure

Machines:

@ bossa (except NUMA)

- Processors: Intel Xeon X5427 quad-core 3GHz,
- Memory: 10 GiB RAM, 32 KiB L1, 6 MiB L2 shared by pair
- System: Linux 3.2 (64 bits), gcc 4.6.3 (-03 + inline functions)

@ amd48 (for NUMA only)

- Processors: AMD Opteron 6172 hexa-core 2.1GHz
- Memory: 32 GiB RAM, 64 KiB L1, 512 KiB L2, 5 MiB L3
- System: Linux 3.0 (64 bits), gcc 4.6.3 (-03 + inline functions)

26/40

Microbench evaluation: order of magnitude

Order of magnitude in speed of communication algorithms

10000 ¢ T T
F Comm test mm——m
L 2478
1000 £
° E
o L 238
= [
100
I 16
10 -/0 ¢ py
O“‘/.;L 6/)20 ef%
,o/. O,?((o)
2, <,
® %, %,
9, ®
N /,o&
< N

27/40

Microbench evaluation: default configuration

Comparison of communication algorithms with default configuration

“Comm” test “Matrix” test
. : : 600 T : T

2478 493
459
399 418

3000 T
2500

2045
2000

1500

MB/s
MB/s

1239 1162
1000

500

28/40

Microbench evaluation: fixed buffer size

Comparison of communication algorithms with same buffer size

“Comm” test “Matrix” test
T T T 600 T T T

3000 T

2478 493
430

2500 456

2000

MB/s

1500

MB/s

1000

500

29/40

MB/s

Microbench evaluation: cache sharing

Influence of memory hierarchy on BatchQueue’s performance

3000

2500

2000

1500

1000

500

sharing of L2 cache

Shared L2 mmmm
2478 Shared memory

MB/s

400

sharing of memory node

352 359

SharedI node mmmmm

Distinct nodes m—m

&
©,
%

Prefetch can only mitigate against small latencies

30/40

Contribution 2

Automated usage of BatchQueue for pipeline parallelism

31/40

Parallelization frameworks

Parallelizing a program requires a lot of commonplace code:
@ thread management (creation, scheduling, termination)
@ synchronization (mutex, barriers)

@ communication

Some high level frameworks exist to hide these details:

@ Data/task parallelism: OpenMP, Threading Building Blocks, Cilk
Plus, ...

@ Pipeline parallelism: Streamlt, OpenMP stream-computing
extension

Improving these frameworks benefits all programs using them

32/40

OpenMP stream-computing extension

OpenMP stream-computing extension offers a familiar syntax
= more likely to be used by many programs

Example d’utilisation

#pragma omp parallel
#pragma omp single
for (i = 0; i < N; i++) {
#pragma omp task input(state) output (x, state)
= compute_update(&state);

#pragma omp task input (x)
retval = g(x);

state

N
compute_update() X

Thread Thread

33/40

Improving OpenMP stream-computing extension

It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

@ MPMC incurs extra synchronization cost
(among producers and among consumers)

@ Pipeline parallelism is mostly about linear streams

34/40

Improving OpenMP stream-computing extension

It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

@ MPMC incurs extra synchronization cost
(among producers and among consumers)

@ Pipeline parallelism is mostly about linear streams

L DO C
@@

-

34/40

Improving OpenMP stream-computing extension

It uses MPMC (Multiple Producers Multiple Consumers) queues
internally for communication. Yet:

@ MPMC incurs extra synchronization cost
(among producers and among consumers)

@ Pipeline parallelism is mostly about linear streams

@ D—0
.)%) ©~@~€ Z =
-~ @€

Automatic selection of BatchQueue for linear streams
= compatibility retained

34/40

BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
@ make communication algorithms interchangeable
© allow transparent use of BatchQueue

35/40

BatchQueue in OpenMP stream-computing extension

2 sets of modifications:
@ make communication algorithms interchangeable

’ 1st step: interchangeable communication algorithms

Adapt BatchQueue to OpenMP stream-computing extension API:
@ adopt similar function calling sequences: return value of
functions passed as parameter of subsequent function calls

@ adopt similar structure organisation: different functions are
passed in different structures

@ zero-copy communication: production and consumption
directly to and from the communication buffer

35/40

BatchQueue in OpenMP stream-computing extension

2 sets of modifications:

@ allow transparent use of BatchQueue

’ 2nd step: transparent use of BatchQueue

@ Automatic selection of BatchQueue for linear streams

@ Buffer size proportional to the number of participants
= keep memory footprint of both algorithms similar

35/40

Function: FM demodulation via a serie of filters
Source: OpenMP stream-computing extension paper

Machine quadhexa
- Processors: Intel Xeon X7460 hexa-core 2.6GHz,

- Memory: 126 GiB RAM, 32 KiB L1, 3 MiB L2 shared by pair
- System: Linux 3.6 (64 bits), gcc 4.6.0

3.5

2.5

15 -

Speedup
N
T

0.5 |-

GOMP stream BatchQueue

36/40

Function: FM demodulation via a serie of filters
Source: OpenMP stream-computing extension paper
Particularity: non linear pipeline

Structure analysis of the pipeline

4
3.5
3k
e 25
& 15+
1¥
0.5 |-
0

GOMP stream BatchQueue

36/40

Trellis computation

Function: computation of the most likely CRC from a given analog signal
Source: Work from Alcatel-Lucent on AAC decoding
Particularity: fills a trellis with dependencies between columns

Trellis computation

Function: computation of the most likely CRC from a given analog signal
Source: Work from Alcatel-Lucent on AAC decoding
Particularity: fills a trellis with dependencies between columns

ORORCORCORCRCR T

6 T T T
GOMP stream s
5 - BatchQueue mmmm
a 4r
=}
9 3t
Q
o
(V)] 2 -
1 L
0

2 4 8

Number of cores

37/40

Pipeline template

Function: template of code only parallelizable with pipeline parallelism
Particularity: backward dependencies between data units

8 EE &S

30

T T T T T T T T T T T
GOMP stream
25 - BatchQueue mmmm

20
15

Speedup

10

2 4 6 8 1012 14 16 18 20 22 24
Number of cores

38/40

Conclusion

@ Optimized inter-core communication with BatchQueue:
@ Tackle problem with memory consistency

+ reduce the need for consistency

+ avoid false sharing when accessing buffer

+ prevent prefetch from creating false sharing
= throughput improved up to a factor 2

@ Minimize memory footprint

+ low memory overhead
= only one extra bit per queue to synchronize

@ Automated usage of BatchQueue for pipeline parallelism:

+ modifications transparent to applications using OpenMP
= automatic selection of BatchQueue for linear streams
+ speedup improved in applications up to a factor 2

39/40

Short term perspectives

@ Improve interaction with scheduler to reduce spinning
@ Fetch the status bit asynchronously using SMT + prefetch

<

Long term perspectives

@ Support 1-to-N and N-to-1 communication
= create optimized algorithms for specialized cases

@ Support N-to-N communication
= follow similar approach to make a cache friendly algorithm

@ Use BatchQueue in other domains
e.g.: offload some computation to a dedicated core

@ Adapt dynamically communication algorithms in applications

40/40

[J. Giacomoni, T. Mosely, and M. Vachharajani.
Fastforward for efficient pipeline parallelism: A cache-optimized
concurrent lock-free queue.
In Proceedings of the The 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. ACM Press,
2008.

[Leslie Lamport.
Specifying concurrent program modules.
ACM Trans. Program. Lang. Syst., 5(2):190-222, 1983.

@ P.P.C. Lee, T. Bu, and G. Chandranmenon.
A Lock-Free, Cache-Efficient Multi-Core Synchronization
Mechanism for Line-Rate Network Traffic Monitoring.
In IPDPS ’10: Proceedings of 24th IEEE International Parallel
and Distributed Processing Symposium, 2010.

[§ Thomas Preud’homme, Julien Sopena, Gaél Thomas, and Bertil
Folliot.
Batchqueue: Fast and memory-thrifty core to core
communication.
In 2010 22nd International Symposium on Computer Architecture
and High Performance Computing, pages 215-222. IEEE, 2010.

40/40

[Y. Zhang, K. Ootsu, T. Yokota, and T. Baba.

Clustered Communication for Efficient Pipelined Multithreading
on Commodity MCPs.

IAENG International Journal of Computer Science, 36, 2009.

40/40

	Context
	Impact of cache consistency system
	BatchQueue SPSC
	BatchQueue's evaluation
	BatchQueue in OpenMP stream-computing extension
	Improvement of pipeline parallelism with BatchQueue

