INTRODUCTION TO THE IPU GRAPH COMPILER AND THE

USE OF LLVM
DAVID BOZIER

THOMAS PREUD’H

THE BOW |PU
WORLD’S FIRST 3D WAFER-ON-WAFER PROCESSOR

silicon wafer stacked processor
Al compute
silicon power delivery
0.9 GigaByte In-Processor-Memory @
1,472 independent processor cores (tiles)
8,832 independent parallel programs

10x IPU-Links™ delivering 320GB/s

Parallelism

Processors [l

Memory

Memory Access

&

IPU — ARCHITECTURED FOR Al

Massive parallelism with ultrafast memory access

CPU

Designed for scalar processes

Off-chip memory

GPU

SIMD/SIMT architecture. Designed
for large blocks of dense
contiguous data

INEEE
“ A
INEEE
d ||

Model and data spread across off-
chip and small on-chip cache, and
shared memory

IPU

Massively parallel MIMD. Designed
for fine-grained, high-
performance computing

Model and data tightly coupled,
and large locally distributed SRAM

ML Frameworks

(®) Lightaing

O PyTorch

PopTorch

& ONNX HALO

7/.5/.5 PaddlePaddle

Coming soon

1 TensorFlow

PopART®

POPLAR® SDK

POPLAR®

PopLIBS
PopSPARSE

PopLIN

PopOPS

PopRAND
PopUTIL
GCL

Graph Compiler S5
) A\

Graph Engine

Poplar Device Interface

(2]
(2]
[}
(3}
o
<
[0}
2
>
[}
o
()
S
[}
o
4=
o
<
B
o

Drivers

IPU Hardware Abstraction Layer

o
<
)
)
@©
o
7]
A
Q
(72}
)

IPUOF Driver

Platform Hardware

IPU-POD
Systems

COMPUTATION GRAPH AND EXECUTION MODEL

COMPUTATIONAL GRAPH BSP SCHEDULE OPTIMIZED IPU EXECUTION
BSP EXECUTION TRACE - IPU TILES 0 - 1215
- g ——
£
EXCHANGE g
£
g
| swe | -%
=
COMPUTE
g
| svne | ‘g_
g | ee———————
ﬁé_
EXCHANGE g
§-
8
s | L
COMPUTE 3
o |
c g-
EXCHANGE
result [0] 8
B

]
e e e e
e —

I I
—_—m
——————————————————
= —

: ; OUTPUT FROM POPVISION GRAPH ANALYSER

POPLAR® HOST PROGRAM

Graph graph(target);

Constructs Poplar® compute graph, graph.addCodelets();

.
tensors, compute sets, Poplar® engine graph.addvVariable(FLOAT, {4},

graph.addVariable(FLOAT, {4},

Tensor vl
Tensor v2

Controls tile-mapping of tensors, vertices SEEETES I

Tensor cl = graph.addConstant< >(FLOAT, {4}, {1.0,
2.0,

Acquires/pre-processes data on the CPU
prog.add(Copy(cl, v1));

Creates stream copies to send data ComputeSet computeSet = graph.addComputeSet (

to/from the IPU (i=0; i<4; ++i) {
VertexRef vtx = graph.addVertex(computeSet,
graph.connect(vtx| 1, vi.slice(i, 4));
Poplar® engine sends instructions to the graph.connect (vtx|[1, v2[il);

IPU graph.setTileMapping(vtx, 1i);
b

prog.add(Execute(computeSet));
prog.add(PrintTensor(, V2));

Engine engine(graph, prog);
engine. load(device);
engine.run(0);

CODELET DEFINITIONS

Codelets written in C++ 17

Compute functions single threaded

Vertices are written as a C++ class that inherit (I)EEC’UE; :XESO = — ik
from the Vertex class t.).ias : P !

The fields of the vertex specify the inputs, compute() {

output and internal data xout = bias;

(& : in) {
The compute method specifies the vertex xout += v;
execution behaviour

Compute functions can also be written in
assembly by adding isExternalCodelet field

Many Vertices provided Poplar® Libraries

ADDING A CODELET TO THE GRAPH

Codelets are processed in 2 stages:

First we analyze the codelet using libclang Y2 B LlEe TS)i

where we:
* \Verify vertices are well formed
* Create metadata of the vertex which is

used by poplar for connecting tensor
data to the vertex fields

__attribute__ ((()))
. ttribut
* Add a vertex wrapper in source as an = <£l urﬁn_Cc()((jelet S el ;){
entry|aoint * xvertexPtr = __builtin_ipu_get_vertex_base();

vV = <SumVertexx>(vertexPtr);
v—>compute();

Then we create a Compilerinstance to
compile the codelet to generate optimized
IPU machine code

Compiled Vertices Variables

Tile O

Compiled Vertices Variables

Tile O

Compiled Vertices Variables

Tile O

MatMul | +

e Control code added that spawns and runs thread on the tile

Compiled Vertices Variables

Tile O

code

e Control code added that spawns and runs thread on the tile

* Exchange code for communication between tiles

Compiled Vertices Variables

Tile O

code ‘

e Control code added that spawns and runs thread on the tile
* Exchange code for communication between tiles

* Some additional runtime library functions may also be required

Compiled Vertices

MatMul Sum

Variables

Tile O
EXEELEE | MatMul | +
code
Tile 1
Exchange | Sum | >
code
Tile 1471
EXEELEE | Sum MatMul | +
code

Repeat for all tiles

K |

-)‘r

LLVM specifics

Bitwise operations

. MRF ARF
IPU tiles are superscalar:

« 2 instruction pipelines (main & aux)

Main Aux

» Pipeline strongly associated with register file
FP ops
« ARF -> MRF via atom, MRF -> ARF via spill LSU

« Bitwise ops available on both pipeline

Challenge: how to reduce register file changes using bitwise operations on ARF

&

Bitwise operation placement

Key ideas of algorithm:

« SDAG nodes have pipeline preference
(main, aux or either)

* Preference is also function of operands

« For a binop, compare its current pipeline
with preference of its operands

@ Aux Q Single pipeline
@ Main Q Either pipeline

@ 17

andc

° and

BCast

Runtime environment overview

Compared to typical desktop systems, IPU runtime
environment has some important differences:

* No operating system
* No dynamic allocation

* 624KiB memory

C++ freestanding proposal addresses the first aspect,
but more work needed for the rest.

18

18

Libcxx changes

<random>:

Reduce memory usage of components to fit in tile memory
Disable PRNGs using dynamic memory allocation

Adapt some of the predefined values to increase quality of
numbers with reasonable size requirements

Misc:

18

Replace std::vector by std::array in tests
Remove bits to reduce include dependencies

Copy libcxx in separate repo to reduce merge frequency

19

<ap_int.h>

IPU supports hardware loop: see Janek van Qirschot's talk
How to hint trip count bounds to help hardware loop generation?

Answer 1: builtin_assume() but does not always work

Answer 2: BitInt (C23 proposal) and lots of template magic

template<std::size t N, bool is signed>
struct ap_int {
public:
using int_type = std::conditional_t<
is_signed, _BitInt(num_bits), unsigned _BitInt(num_bits)>;
// operator overloads

private:

int_type value;

}

18

20

LLDB

Supports multi-tile applications as a multi-process application
=> 1 tile = 1 process

Augmented with IPU-specific commands:

app - - Global commands (e.g., continue, interrupt)
log - - Control IPU device logging
SOC - - Read specified SoC register(s)

thread -- Tile threads commands (e.qg., list, status)

tile -- Tile commands (e.g., attach, select, list)

18

21

Positive experiences

A lot of features worked out of the box:

« Middle end optimisations & C++ support

« _Bitint (ex _Extint)

 Builtins

* Pragma and attribute (e.g., nounroll pragma and noinline attribute)

Also, good experience with community response to patches:
« Usually review in a timely manner

« Sympathetic to out-of-tree targets issues that can be solved without affecting
in-tree targets and without maintenance burden

18

22

RESOURCES

C
o
)

©
o+

C

Q

&

>

O

O
©

eT0]
=
@)
=

O
=

%)

>
)

>

o
0

q9)

)

| -

@)

S
i)

>

@)
©
=
L

ot
©
)
©
o
O
)
S
o
>
O
2]
©
c
©

www.graphcore.ai

https://github.com/graphcore

Open source fork of our LLVM backend will be

available very soon

http://www.graphcore.ai/
https://github.com/graphcore

