
BERT LARGE – POPLAR GRAPH VISUALIZATION FROM POPART

INTRODUCTION TO THE IPU GRAPH COMPILER AND THE 
USE OF LLVM
DAVID BOZIER
THOMAS PREUD’HOMME



THE BOW IPU 
WORLD’S FIRST 3D WAFER-ON-WAFER PROCESSOR

3D silicon wafer stacked processor

350 TeraFLOPS AI compute

Optimized silicon power delivery

0.9 GigaByte In-Processor-Memory @ 65TB/s

1,472 independent processor cores (tiles)

8,832 independent parallel programs

10x IPU-Links™ delivering 320GB/s

GRAPHCORE



IPU – ARCHITECTURED FOR AI

3

Massive parallelism with ultrafast memory access



POPLAR® SDK



SYNC

SYNC

SYNC

SYNC

COMPUTATION GRAPH AND EXECUTION MODEL

COMPUTE

COMPUTE

BSP SCHEDULE

EXCHANGE

EXCHANGE

EXCHANGE

COMPUTATIONAL GRAPH OPTIMIZED IPU EXECUTION

OUTPUT FROM POPVISION GRAPH ANALYSER

BSP EXECUTION TRACE - IPU TILES 0 - 1215



POPLAR® HOST PROGRAM

• Constructs Poplar® compute graph, 
tensors, compute sets, Poplar® engine

• Controls tile-mapping of tensors, vertices

• Acquires/pre-processes data on the CPU

• Creates stream copies to send data 
to/from the IPU

• Poplar® engine sends instructions to the 
IPU

Graph graph(target);

graph.addCodelets("SumVertex.cpp");

Tensor v1 = graph.addVariable(FLOAT, {4}, "v1");
Tensor v2 = graph.addVariable(FLOAT, {4}, "v2");

Sequence prog;

Tensor c1 = graph.addConstant<float>(FLOAT, {4}, {1.0, 1.5, 
2.0, 2.5});

prog.add(Copy(c1, v1));

ComputeSet computeSet = graph.addComputeSet("computeSet");
for (unsigned i = 0; i < 4; ++i) {

VertexRef vtx = graph.addVertex(computeSet, "SumVertex");
graph.connect(vtx["in"], v1.slice(i, 4));
graph.connect(vtx["out"], v2[i]);
graph.setTileMapping(vtx, i);

}

prog.add(Execute(computeSet));
prog.add(PrintTensor("v2", v2));

Engine engine(graph, prog);
engine.load(device);
engine.run(0);



CODELET DEFINITIONS

#include <poplar/Vertex.hpp>

class SumVertex : public poplar::Vertex {
public:

// Fields
poplar::Input<poplar::Vector<float>> in;
poplar::Output<float> out;
float bias;
// Compute function
bool compute() {

*out = bias;
for (const auto &v : in) {

*out += v;
}
return true;

}
};

• Codelets written in C++ 17

• Compute functions single threaded

• Vertices are written as a C++ class that inherit 
from the Vertex class

• The fields of the vertex specify the inputs, 
output and internal data

• The compute method specifies the vertex 
execution behaviour

• Compute functions can also be written in 
assembly by adding isExternalCodelet field

• Many Vertices provided Poplar® Libraries



ADDING A CODELET TO THE GRAPH

__attribute__((target("worker")))
__attribute__((colossus_vertex))
int << __runCodelet_SumVertex() {

void *vertexPtr = __builtin_ipu_get_vertex_base();
auto v = static_cast<SumVertex*>(vertexPtr);
return v->compute();

}

Codelets are processed in 2 stages:

First we analyze the codelet using libclang
where we:

• Verify vertices are well formed

• Create metadata of the vertex which is 
used by poplar for connecting tensor 
data to the vertex fields

• Add a vertex wrapper in source as an 
entry point

Then we create a CompilerInstance to 
compile the codelet to generate optimized 
IPU machine code

graph.addCodelets("SumVertex.cpp");



Tile 0

MatMul + Sum var1 var2 var3

Compiled Vertices Variables



+MatMul var1

Tile 0

MatMul + Sum var1 var2 var3

var3

Compiled Vertices Variables



+MatMul var1Control 
code

Tile 0

MatMul + Sum var1 var2 var3

var3

Compiled Vertices Variables

• Control code added that spawns and runs thread on the tile



+MatMul var1Exchange 
code

Control 
code

Tile 0

MatMul + Sum var1 var2 var3

var3

Compiled Vertices Variables

• Control code added that spawns and runs thread on the tile

• Exchange code for communication between tiles



+MatMul var1Exchange 
code

Control 
code

Tile 0

MatMul + Sum var1 var2 var3

var3

Compiled Vertices Variables

Runtime 
libraries

• Control code added that spawns and runs thread on the tile

• Exchange code for communication between tiles

• Some additional runtime library functions may also be required



+MatMul var1Exchange 
code

Control 
code

Tile 0

+Exchange 
code

Control 
code

Tile 1

Exchange 
code

Control 
code

Tile 1471

Runtime 
libraries

Sum

Sum

var1 var2

MatMul + Runtime 
libraries

var1 var2

MatMul + Sum var1 var2 var3

var3

var3

Compiled Vertices Variables

Runtime 
libraries

…

Repeat for all tiles



LLVM specifics



Bitwise operations

16

IPU tiles are superscalar:

• 2 instruction pipelines (main & aux)

• Pipeline strongly associated with register file

• ARF -> MRF via atom, MRF -> ARF via spill

• Bitwise ops available on both pipeline

Challenge: how to reduce register file changes using bitwise operations on ARF

IALU LSU FP ops
(incl. bitwise)

Main Aux

MRF ARF



Bitwise operation placement

17

A A

M M

M

A

M

M

A A

A

A

A

M

Key ideas of algorithm:
• SDAG nodes have pipeline preference

(main, aux or either)
• Preference is also function of operands
• For a binop, compare its current pipeline

with preference of its operands

BCast BCast BCast

andc

and

andc

and

BCast

A Aux

M Main

Single pipeline

Either pipeline



Runtime environment overview

Compared to typical desktop systems, IPU runtime 
environment has some important differences:

• No operating system

• No dynamic allocation

• 624KiB memory

C++ freestanding proposal addresses the first aspect, 
but more work needed for the rest.

18



Libcxx changes

<random>:

• Reduce memory usage of components to fit in tile memory

• Disable PRNGs using dynamic memory allocation

• Adapt some of the predefined values to increase quality of 
numbers with reasonable size requirements

Misc:

• Replace std::vector by std::array in tests

• Remove bits to reduce include dependencies

• Copy libcxx in separate repo to reduce merge frequency

19



<ap_int.h>

IPU supports hardware loop: see Janek van Oirschot's talk

How to hint trip count bounds to help hardware loop generation?

Answer 1: __builtin_assume() but does not always work

Answer 2: _BitInt (C23 proposal) and lots of template magic
template<std::size_t N, bool is_signed>
struct ap_int {
public:

using int_type = std::conditional_t<
is_signed, _BitInt(num_bits), unsigned _BitInt(num_bits)>;

// operator overloads

private:
int_type value;

}

20



LLDB

Supports multi-tile applications as a multi-process application
=> 1 tile = 1 process

Augmented with IPU-specific commands:

app -- Global commands (e.g., continue, interrupt)

log -- Control IPU device logging
soc -- Read specified SoC register(s)

thread -- Tile threads commands (e.g., list, status)

tile -- Tile commands (e.g., attach, select, list)

21



Positive experiences

A lot of features worked out of the box:
• Middle end optimisations & C++ support
• _BitInt (ex _ExtInt)
• Builtins
• Pragma and attribute (e.g., nounroll pragma and noinline attribute)

Also, good experience with community response to patches:
• Usually review in a timely manner
• Sympathetic to out-of-tree targets issues that can be solved without affecting 

in-tree targets and without maintenance burden

22



RESOURCES

Find out more about us including documentation 
and source code at:

www.graphcore.ai

https://github.com/graphcore

Open source fork of our LLVM backend will be 
available very soon

http://www.graphcore.ai/
https://github.com/graphcore


THANK YOU

24


